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ON THE GOTHARD MODEL FOR PREDICTING 
PHASE EQUILIBRIA 

JAIME WISNIAK* and ALEXANDER APELBLAT 

Department of Chemicul Engineering, Ben-Gurion University of the Negev, 
Beer-Shew 84105, Isruel 

(Receired 22 October 1994 j 

The important features of the Gothard model are discussed and simple procedures are proposed for 
calculating the adjustable parameters of the model. The possibilities of the model for predicting phase 
separation are analyzed. 
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Gothard (1981, 1985) has proposed a new model for describing the behavior of real 
mixtures where the excess of Gibbs energy of the mixture is derived on the assump- 
tion that the largest contribution to deviation from ideal behavior is the result of a 
process governed by the mass action law and that there are groups of n neighbor 
molecules whose interactions determine the nonideality of the mixture. Gothard 
tested his model on 168 binary systems and 6 ternaries and claimed that it improved 
significantly the correlation of vapor-liquid equilibrium data in comparison with the 
results given by the Wilson and Renon equations. 

The purpose of this communication is to analyze the most significant features of 
this model as well as suggest a simple method for calculating its parameters. 

According to Gothard (1985) 

~ G E  =-In 1 [-I n ( n -  1) 
RT K 

where 

where x i  is the mole fraction of component i, nij  are the adjustable parameters for 
the model and K is an additional parameter that equals four for systems without 
miscibility gaps. 

For a binary system we get 

- x 1  + x 2 - 
2 
n .xl + x 2  n 1 2  .x2 + x 1  
- 

I83 

(3) 
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and 

Gothard’s relation satisfies the Gibbs-Duhem equation and the necessary condi- 
tion that G E  be zero at x = 0 and x = 1. At infinite dilution we have 

nr = 2  ( 6 )  

For systems showing negative deviations from Raoult’s law both n,,  and nZ1 will 
be smaller than unity and in the intermediate range O < x <  1 we have that the 
number of interacting neighbor molecules is 

l < n < 2  (7) 

For all other cases n will be larger than 2. 
The activity coefficients at infinite dilution are 

K 

so that 

Since G E  must have at least one extreme value, we have 

and from Eqns. 4,5 and 11, 

n(2n  - 1) - n2 1 ] = o  
(xi + xTn21)2 

where x1 = xT is the concentration at the extreme value of G E .  
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Since n > 1 we must have, from Eqn. 12 

Equation 13 is a quadratic in nl, (or n z l )  that can be solved to give two roots 
which relate n,, with nZ1: 

1 
n12 =- 

'22 1 
i 14) 

(15) 

However, Eqn. is physically unacceptable. 
An very interesting consequence of Eqn. 15 is that the ratio of the activity coeffi- 

cients at infinite dilution is related to the composition at the extreme value of G E .  In 
effect, comparing Eqns. 10 and 15 we have 

Equation 13 can also be solved to give the composition at the extreme of n in 
terms of the two adjustable parameters n12  and n21: 

with 0 < x ?  < 1. It should be noted that both G"/RT and n reach their extreme 
values at x1 = x:. 

The fact that y =  G E / R T  has an extreme value can be used to separate the 
parameters in other two-parameter equations like Margules and Van Laar (see 
appendix). 

The capability of the Gothard model for predicting phase separation (liquid- 
liquid) can be explored applying one of the following two criteria (Walas, 1985): 

or 
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Using Eqns. 1 and 18 we get, after simplification 

2n-1  d2n 2 n 2 - 2 n + 1  dn K 
n ( n -  1) dx: n z ( n -  1)’ (G) x l x z  

+- 6 0  

with 

There is no simple way of determining the conditions that the adjustable 
parameters nl,, n,, and K must comply in order that Eqn. 20 be satisfied. Neverthe- 
less, if we assume that the criteria given by it should be satisfied for x = 0.5 Eqn. 20 
becomes 

If within the framework of lattice theories we wish to attribute a physical meaning 
to the parameters of the Gothard model, then the K parameter can be identified 
with the order parameter s and we will have K = 4s  (Moelwyn-Hughes, 1961). This 
limits the range of K from zero (total disorder) to four (complete order). However, 
since Gothard treated K as a rather empirical third parameter, we can extend its 
range to any negative or positive value. On this basis we have proceeded to plot the 
contours of Eqn. 23 for different values of K (Figure 1). 

Calculation of the adjustable parameters 

In addition to the optimization procedure employed by Gothard (1985) for 
obtaining the values of n12 and n,,, we can use the following alternative methods, 
suggested by the model equations. 

a) A plot of G E / R T  will give the values of the extreme coordinates which can be 
used to solve Equations 3 and 13 together and separate n, ,  from n,,. 

From Eqns. 3 and 15 we get 

n,, = (n* - l ) >  x: 
X 2  

n , ,= (n*- l )<  xs  

X 1  
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Figure 1 Incipient phase separation for x = 0.5 

where n* is the value of n at the extremum of G E .  In other words, utilization of the 
extreme value of GE/RT allows a simple separation of the parameters n12 and nZ1. 

b) The values of G E / R T  can be used to plot n as a function of composition xl .  
Equation 1 may be written 

where 6(x) is an auxiliary function so that 

For x1 = 0.5 Eqn. 3 yields 
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so that 
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2 - A + (1 - A)n,, 
( A  - 1) + A n , ,  2 =  

Equation 29 is then substituted in Eqn. 13 to obtain the value of nZ1. 
c) The values of n (x1)  can be read at x1 = 0.5 and say, x1 = 0.25, 

Combining together Eqns. 29 and 30 we get 

( A - l ) + A n , ,  3 
B =  +- 

3 + n21 (5 - 2A) + ( 3  - 2A)n,, 

Equation 31 is a quadratic in n,, with roots 

(32) 
( A  + 7B - 4AB-4)+ 2J(A - l ) ( B -  1)(4- A - B +  A B )  

A - 3B+ 2AB n 2 1 =  

and using Eqn. 29 

(33) 
(7A + B - 4AB - 4) f 2J(A - 1) ( B  - 1) (4 - A - B + AB)  

3 ( - 3 A + B + 2 A B )  n 1 2  = 

d)  If the system has an azeotropic point we can use this information as follows: 
At  the azeotropic point we have 

Using Eqn. 34 together with the definition of g yields 

Also 

Simultaneous solution of Eqns. 35 and 36 will yield the pertinent values of n ,  , 
and n 2 1 .  It should be clear that the accuracy of this method depends on the accuracy 
of the azeotropic data. 
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Constants in the Margules and Van Laar equations 
Constants in the Hajra equation 
Auxiliary function defined by Eqn. 26 
Excess Gibbs function 
Dimensionless parameter equal to G"/RT 
Parameter of the model, Eqn. 2 
Parameter defined by Eqn. 2 
Parameters of the model 
Universal gas constant 
Absolute temperature 
Liquid phase composition of component i 
Activity coefficient of component i 

Indexes 

Az Azeotrope 
i Component i 

Ks Infinite dilution 
* Value of property at extreme value of (1 
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APPENDIX 

The fact that 6,  = G"/RT must have at least one extreme value ( g * )  can be used to 
separate the constants in the two-parameter Margules, Van Laar and Hajra (1980) 
models as follows: 

u )  Margules equation (Walas, 1985) 

For the Margules model we have 

In y2  = x ? [ B  + 2 ( A  - B).u,] 
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so that 
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b)  Van Laar equation (Walas, 1985) 

In this case we have 

2 

In  y1 = A [ Ax;:\x2] 

In y2 = [ AX;:~X,] 

2 

so that 

* 
A=[$] 

.=[$I* 
c )  Hajra equation 

g =  aox,x2ebx~ 

aoxi ( l  + bx,)ebxl 
RT 

Iny, = 

aox:(l - -h+bx,)e””~ 
RT 

In y2  = 

so that 

(48) 

(49) 
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